Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2783: 221-233, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478236

RESUMO

Three-dimensional (3D) cell culture techniques have become a valuable tool to mimic the complex interactions of cells with each other and their surrounding extracellular matrix as they occur in vivo. In this respect, 3D spheroids are widely acknowledged as self-assembled cellular aggregates that can be generated from a variety of cell types without the need for exogenous material while being highly reproducible, easy to handle, and cost-effective. Furthermore, due to their capacity to be developed into microtissues, spheroids represent potential building blocks for various tissue engineering applications, including 3D bioprinting approaches for tissue model development. Adipose-derived stromal/stem cells (ASCs), due to their ease of isolation, multipotent nature, and secretory capacity, represent an attractive cell source employed in numerous tissue engineering studies and other cell-based therapy approaches. In this chapter, we describe two procedures for robust spheroid generation, namely the liquid overlay technique, either using agarose-coated 96-well plates or employing agarose-cast micromolds. Furthermore, we show, in principle, the generation of ASC spheroids with subsequent adipogenic differentiation and the spheroid generation using adipogenically differentiated ASCs, as well as the morphological characterization of generated spheroids.


Assuntos
Adipócitos , Esferoides Celulares , Sefarose , Diferenciação Celular , Engenharia Tecidual/métodos , Tecido Adiposo
2.
Adv Healthc Mater ; 12(30): e2300977, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699146

RESUMO

Volumetric bioprinting (VBP) is a light-based 3D printing platform, which recently prompted a paradigm shift for additive manufacturing (AM) techniques considering its capability to enable the fabrication of complex cell-laden geometries in tens of seconds with high spatiotemporal control and pattern accuracy. A flexible allyl-modified gelatin (gelAGE)-based photoclick resin is developed in this study to fabricate matrices with exceptionally soft polymer networks (0.2-1.0 kPa). The gelAGE-based resin formulations are designed to exploit the fast thiol-ene crosslinking in combination with a four-arm thiolated polyethylene glycol (PEG4SH) in the presence of a photoinitiator. The flexibility of the gelAGE biomaterial platform allows one to tailor its concentration spanning from 2.75% to 6% and to vary the allyl to thiol ratio without hampering the photocrosslinking efficiency. The thiol-ene crosslinking enables the production of viable cell-material constructs with a high throughput in tens of seconds. The suitability of the gelAGE-based resins is demonstrated by adipogenic differentiation of adipose-derived stromal cells (ASC) after VBP and by the printing of more fragile adipocytes as a proof-of-concept. Taken together, this study introduces a soft photoclick resin which paves the way for volumetric printing applications toward soft tissue engineering.


Assuntos
Bioimpressão , Engenharia Tecidual , Engenharia Tecidual/métodos , Gelatina , Bioimpressão/métodos , Hidrogéis , Impressão Tridimensional , Compostos de Sulfidrila , Tecidos Suporte
3.
Cancers (Basel) ; 15(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37444610

RESUMO

The tumor microenvironment (TME) in breast cancer is determined by the complex crosstalk of cancer cells with adipose tissue-inherent cells such as adipose-derived stromal cells (ASCs) and adipocytes resulting from the local invasion of tumor cells in the mammary fat pad. This leads to heterotypic cellular contacts between these cell types. To adequately mimic the specific cell-to-cell interaction in an in vivo-like 3D environment, we developed a direct co-culture spheroid model using ASCs or differentiated adipocytes in combination with MDA-MB-231 or MCF-7 breast carcinoma cells. Co-spheroids were generated in a well-defined and reproducible manner in a high-throughput process. We compared the expression of the tumor-promoting chemokine CCL5 and its cognate receptors in these co-spheroids to indirect and direct standard 2D co-cultures. A marked up-regulation of CCL5 and in particular the receptor CCR1 with strict dependence on cell-cell contacts and culture dimensionality was evident. Furthermore, the impact of direct contacts between ASCs and tumor cells and the involvement of CCR1 in promoting tumor cell migration were demonstrated. Overall, these results show the importance of direct 3D co-culture models to better represent the complex tumor-stroma interaction in a tissue-like context. The unveiling of tumor-specific markers that are up-regulated upon direct cell-cell contact with neighboring stromal cells, as demonstrated in the 3D co-culture spheroids, may represent a promising strategy to find new targets for the diagnosis and treatment of invasive breast cancer.

4.
Cells ; 10(4)2021 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916870

RESUMO

Biofabrication, including printing technologies, has emerged as a powerful approach to the design of disease models, such as in cancer research. In breast cancer, adipose tissue has been acknowledged as an important part of the tumor microenvironment favoring tumor progression. Therefore, in this study, a 3D-printed breast cancer model for facilitating investigations into cancer cell-adipocyte interaction was developed. First, we focused on the printability of human adipose-derived stromal cell (ASC) spheroids in an extrusion-based bioprinting setup and the adipogenic differentiation within printed spheroids into adipose microtissues. The printing process was optimized in terms of spheroid viability and homogeneous spheroid distribution in a hyaluronic acid-based bioink. Adipogenic differentiation after printing was demonstrated by lipid accumulation, expression of adipogenic marker genes, and an adipogenic ECM profile. Subsequently, a breast cancer cell (MDA-MB-231) compartment was printed onto the adipose tissue constructs. After nine days of co-culture, we observed a cancer cell-induced reduction of the lipid content and a remodeling of the ECM within the adipose tissues, with increased fibronectin, collagen I and collagen VI expression. Together, our data demonstrate that 3D-printed breast cancer-adipose tissue models can recapitulate important aspects of the complex cell-cell and cell-matrix interplay within the tumor-stroma microenvironment.


Assuntos
Tecido Adiposo/citologia , Bioimpressão , Neoplasias da Mama/patologia , Diferenciação Celular , Modelos Biológicos , Esferoides Celulares/citologia , Adipogenia , Sobrevivência Celular , Matriz Extracelular/metabolismo , Feminino , Humanos , Ácido Hialurônico/química , Hidrogéis/química , Impressão Tridimensional , Células Estromais/citologia
5.
Cells ; 9(9)2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825678

RESUMO

Adipose-derived stromal/stem cells (ASCs) have been shown to exert regenerative functions, which are mainly attributed to the secretion of trophic factors. Upon transplantation, ASCs are facing an ischemic environment characterized by oxygen and nutrient deprivation. However, current knowledge on the secretion capacity of ASCs under such conditions is limited. Thus, the present study focused on the secretory function of ASCs under glucose and oxygen deprivation as major components of ischemia. After exposure to glucose/oxygen deprivation, ASCs maintained distinct viability, but the metabolic activity was greatly reduced by glucose limitation. ASCs were able to secrete a broad panel of factors under glucose/oxygen deprivation as revealed by a cytokine antibody array. Quantification of selected factors by ELISA demonstrated that glucose deprivation in combination with hypoxia led to markedly higher secretion levels of the angiogenic and anti-apoptotic factors IL-6, VEGF, and stanniocalcin-1 as compared to the hypoxic condition alone. A conditioned medium of glucose/oxygen-deprived ASCs promoted the viability and tube formation of endothelial cells, and the proliferation and migration of fibroblasts. These findings indicate that ASCs are stimulated by ischemia-like stress conditions to secrete trophic factors and would be able to exert their beneficial function in an ischemic environment.


Assuntos
Tecido Adiposo/metabolismo , Isquemia/metabolismo , Células-Tronco/metabolismo , Células Estromais/metabolismo , Humanos
6.
Tissue Eng Part A ; 26(15-16): 915-926, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32070231

RESUMO

Adipose-derived mesenchymal stromal/stem cells (ASCs) represent a commonly used cell source for adipose tissue engineering. In this context, ASCs have routinely been cultured in conventional 2D culture and applied as single cell suspension for seeding onto scaffold materials or direct injection. However, this approach is associated with the loss of their intrinsic 3D microenvironment and leads to impaired regenerative capacity of the cells. Thus, the application of ASCs as self-assembled 3D spheroids with cells residing in their own matrix is an attractive alternative. However, characterization of the structural features and differentiation capacity of the spheroids is necessary to effectively apply them as building blocks in adipose tissue engineering. In this study, we focus on extracellular matrix (ECM) development in ASC spheroids, as well as adipogenic differentiation in comparison to conventional 2D culture using different induction protocols. Reproducible assembly of ASCs into spheroids was achieved within 24 h using the liquid overlay technique. Undifferentiated spheroids displayed a stromal ECM pattern, with fibronectin, collagen V, and VI as the main components. In the course of adipogenesis, a dynamic shift in the ECM composition toward an adipogenic phenotype was observed, associated with enhanced expression of laminin, collagen I, IV, V, and VI, similar to native fat. Furthermore, adipogenic differentiation was enhanced in spheroids as compared with 2D cultured cells, with the spheroids needing a distinctly shorter adipogenic stimulus to sustain adipogenesis, which was demonstrated based on analysis of triglyceride content and adipogenic marker gene expression. In summary, culturing ASCs as spheroids can enhance their adipogenic capacity and generate adipose-like microtissues, which may be a promising cell delivery strategy for adipose tissue engineering approaches. Impact statement Adipose-derived mesenchymal stromal/stem cells (ASCs) as a widely used cell source for adipose tissue engineering have been shown to be limited in their regenerative capacity when applied as single cells. As an alternative approach, the delivery as spheroids, consisting of cells in a 3D context, may be favorable. However, insights into extracellular matrix (ECM) development and efficient adipogenic differentiation are required for their effective application. In this study, we show that differentiated ASC spheroids develop an ECM, resembling native adipose tissue. Furthermore, the ASC spheroids exhibited a superior differentiation capacity as compared with conventional 2D culture, and required only a short adipogenic induction stimulus. Our results identify ASC-derived spheroids as an attractive cell delivery method for adipose tissue engineering approaches.


Assuntos
Adipogenia , Tecido Adiposo , Matriz Extracelular , Células-Tronco Mesenquimais , Diferenciação Celular , Células Cultivadas , Humanos , Engenharia Tecidual
7.
Adv Healthc Mater ; 8(7): e1801326, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30835969

RESUMO

Melt electrowriting (MEW) is an additive manufacturing technology that is recently used to fabricate voluminous scaffolds for biomedical applications. In this study, MEW is adapted for the seeding of multicellular spheroids, which permits the easy handling as a single sheet-like tissue-scaffold construct. Spheroids are made from adipose-derived stromal cells (ASCs). Poly(ε-caprolactone) is processed via MEW into scaffolds with box-structured pores, readily tailorable to spheroid size, using 13-15 µm diameter fibers. Two 7-8 µm diameter "catching fibers" near the bottom of the scaffold are threaded through each pore (360 and 380 µm) to prevent loss of spheroids during seeding. Cell viability remains high during the two week culture period, while the differentiation of ASCs into the adipogenic lineage is induced. Subsequent sectioning and staining of the spheroid-scaffold construct can be readily performed and accumulated lipid droplets are observed, while upregulation of molecular markers associated with successful differentiation is demonstrated. Tailoring MEW scaffolds with pores allows the simultaneous seeding of high numbers of spheroids at a time into a construct that can be handled in culture and may be readily transferred to other sites for use as implants or tissue models.


Assuntos
Engenharia Tecidual , Tecidos Suporte/química , Adipogenia/efeitos dos fármacos , Tecido Adiposo/citologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Gotículas Lipídicas/metabolismo , Poliésteres/química , Porosidade , Impressão Tridimensional , Sefarose/química , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo
8.
J Cell Physiol ; 233(4): 3315-3329, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28888046

RESUMO

Adipose-derived stromal/stem cells (ASCs) represent a widely used cell source with multi-lineage differentiation capacity in approaches for tissue engineering and regenerative medicine. Despite the multitude of literature on their differentiation capacity, little is reported about the physiological properties contributing to and controlling the process of lineage differentiation. Direct intercellular communication between adjacent cells via gap junctions has been shown to modulate differentiation processes in other cell types, with connexin 43 (Cx43) being the most abundant isoform of the gap junction-forming connexins. Thus, in the present study we focused on the expression of Cx43 and gap junctional intercellular communication (GJIC) in human ASCs, and its significance for adipogenic differentiation of these cells. Cx43 expression in ASCs was demonstrated histologically and on the gene and protein expression level, and was shown to be greatly positively influenced by cell seeding density. Functionality of gap junctions was proven by dye transfer analysis in growth medium. Adipogenic differentiation of ASCs was shown to be also distinctly elevated at higher cell seeding densities. Inhibition of GJIC by 18α-glycyrrhetinic acid (AGA) significantly compromised adipogenic differentiation, as demonstrated by histology, triglyceride quantification, and adipogenic marker gene expression. Flow cytometry analysis showed a lower proportion of cells undergoing adipogenesis when GJIC was inhibited, further indicating the importance of GJIC in the differentiation process. Altogether, this study demonstrates the impact of direct cell-cell communication via gap junctions on the adipogenic differentiation process of ASCs, and may contribute to further integrate direct intercellular crosstalk in rationales for tissue engineering approaches.


Assuntos
Adipogenia , Tecido Adiposo/citologia , Comunicação Celular , Junções Comunicantes/metabolismo , Células-Tronco/metabolismo , Contagem de Células , Conexina 43/metabolismo , Humanos , Células Estromais/metabolismo
9.
J Tissue Eng Regen Med ; 10(10): E409-E418, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-24170732

RESUMO

Adipose tissue engineering aims at the restoration of soft tissue defects and the correction of contour deformities. It is therefore crucial to provide functional adipose tissue implants with appropriate volume stability. Here, we investigate two different fibrin formulations, alone or in combination with biodegradable polyurethane (PU) scaffolds as additional support structures, with regard to their suitability to generate volume-stable adipose tissue constructs. Human adipose-derived stem cells (ASCs) were incorporated in a commercially available fibrin sealant as well as a stable fibrin hydrogel previously developed by our group. The composite constructs made from the commercially available fibrin and porous poly(ε-caprolactone)-based polyurethane scaffolds exhibited increased volume stability as compared to fibrin gels alone; however, only constructs using the stable fibrin gels completely maintained their size and weight for 21 days. Adipogenesis of ASCs was not impaired by the additional PU scaffold. After induction with a common hormonal cocktail, for constructs with either fibrin formulation, strong adipogenic differentiation of ASCs was observed after 21 days in vitro. Furthermore, upregulation of adipogenic marker genes was demonstrated at mRNA (PPARγ, C/EBPα, GLUT4 and aP2; qRT-PCR) and protein (leptin; ELISA) levels. Stable fibrin/PU constructs were further evaluated in a pilot in vivo study, resulting in areas of well-vascularized adipose tissue within the implants after only 5 weeks. Copyright © 2013 John Wiley & Sons, Ltd.


Assuntos
Tecido Adiposo/metabolismo , Fibrina/química , Hidrogéis/química , Poliésteres/química , Poliuretanos/química , Células-Tronco/metabolismo , Tecidos Suporte/química , Tecido Adiposo/citologia , Adulto , Feminino , Humanos , Células-Tronco/citologia
10.
Tissue Eng Part A ; 21(7-8): 1343-53, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25602488

RESUMO

The development of vascularized and functional adipose tissue substitutes is required to improve soft tissue augmentation. In this study, vascularized adipose tissue constructs were generated using uncultured cells from the stromal-vascular fraction (SVF) of adipose tissue as an alternative cell source to adipose-derived stem cells. SVF cell behavior and tissue formation were compared in a stable fibrin formulation developed by our group and a commercial fibrin sealant (TissuCol; Baxter) upon direct subcutaneous implantation in a nude mouse model. Further, the effect of in vitro adipogenic induction on SVF cell development was investigated by implanting stable fibrin constructs after 1 week of precultivation (adipogenic vs. noninduced control). Constructs were thoroughly analyzed before implantation regarding adipogenic differentiation status, cell viability, and distribution as well as the presence of endothelial cells. Before implantation, in vitro precultivation strongly promoted adipogenesis (under adipogenic conditions) and the formation of CD31(+) prevascular structures by SVF cells (under nonadipogenic conditions). Tissue development in vivo was determined after 4 weeks by histology (hematoxylin and eosin, human vimentin) and quantified histomorphometrically. In stable fibrin gels, adipogenic precultivation was superior to noninduced conditions, resulting in mature adipocytes and the formation of distinct vascular structures of human origin in vivo. Strong neovascularization by the implanted cells predominated in noninduced constructs. Without pretreatment, the SVF in stable fibrin gels displayed only a weak differentiation capability. In contrast, TissuCol gels strongly supported the formation of coherent and well-vascularized adipose tissue of human origin, displaying large unilocular adipocytes. The developed native-like tissue architecture was highlighted by a whole mount staining technique. Taken together, SVF cells from human adipose tissue were shown to successfully lead to adipose tissue formation in fibrin hydrogels in vivo. The results render the SVF a promising cell source for subsequent studies both in vitro and in vivo with the aim of engineering clinically applicable soft tissue substitutes.


Assuntos
Tecido Adiposo/irrigação sanguínea , Fibrina/farmacologia , Hidrogéis/farmacologia , Engenharia Tecidual/métodos , Tecido Adiposo/efeitos dos fármacos , Adulto , Animais , Biomarcadores/metabolismo , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Citometria de Fluxo , Humanos , Camundongos Nus , Pessoa de Meia-Idade , Implantação de Prótese , Células Estromais/citologia , Células Estromais/efeitos dos fármacos
11.
Cytotherapy ; 16(12): 1700-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25304663

RESUMO

BACKGROUND AIMS: Complex injuries of the upper and lower extremities often result in scarring and subsequent adhesion formation, which may cause severe pain and distinctly reduce range of motion. In revision surgery, replacement of the missing subcutaneous tissue is desirable to prevent new adhesions, to cushion scarred tendons and nerves and to regain tissue elasticity. Therefore, the objective of this study was the in vitro evaluation of cell-seeded collagen matrices to serve as the basis for the reconstruction of the subcutaneous adipose tissue layer. METHODS: Five commercially available acellular dermal collagen matrices were seeded with human adipose-derived stromal cells (hASC). Size and shape stability of cell-matrix constructs were assessed and cell adhesion onto the matrix surface was evaluated histologically. Adipogenic differentiation of hASC on matrices was evaluated by means of histological staining, triglyceride quantification, and quantitative real-time polymerase chain reaction gene expression analysis. RESULTS: The collagen matrix Permacol was the only cell-seeded material that exhibited excellent size and shape stability. For Permacol and Strattice, successful seeding with continuous cell layers on top of the matrices was observed. For both matrices, histological staining, triglyceride quantification and messenger RNA expression of adipogenic transcription factors indicated substantial adipogenic differentiation of hASC after long-term induction as well as after short-term induction of only 4 days. CONCLUSIONS: Of all matrices investigated, only Permacol exhibited adequate handling stability and the development of a thin adipose tissue layer on top of the matrix. Thus, this matrix appears promising to be used in the development of a subcutaneous cushioning layer after complex injuries involving large scar formation.


Assuntos
Colágeno/química , Matriz Extracelular/química , Células-Tronco Mesenquimais/metabolismo , Gordura Subcutânea/metabolismo , Adulto , Técnicas de Cultura de Células , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Gordura Subcutânea/citologia
12.
Small ; 8(24): 3847-56, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22911477

RESUMO

Because nanoparticles are finding uses in myriad biomedical applications, including the delivery of nucleic acids, a detailed knowledge of their interaction with the biological system is of utmost importance. Here the size-dependent uptake of gold nanoparticles (AuNPs) (20, 30, 50 and 80 nm), coated with a layer-by-layer approach with nucleic acid and poly(ethylene imine) (PEI), into a variety of mammalian cell lines is studied. In contrast to other studies, the optimal particle diameter for cellular uptake is determined but also the number of therapeutic cargo molecules per cell. It is found that 20 nm AuNPs, with diameters of about 32 nm after the coating process and about 88 nm including the protein corona after incubation in cell culture medium, yield the highest number of nanoparticles and therapeutic DNA molecules per cell. Interestingly, PEI, which is known for its toxicity, can be applied at significantly higher concentrations than its IC(50) value, most likely because it is tightly bound to the AuNP surface and/or covered by a protein corona. These results are important for the future design of nanomaterials for the delivery of nucleic acids in two ways. They demonstrate that changes in the nanoparticle size can lead to significant differences in the number of therapeutic molecules delivered per cell, and they reveal that the toxicity of polyelectrolytes can be modulated by an appropriate binding to the nanoparticle surface.


Assuntos
DNA/administração & dosagem , Ouro , Nanopartículas Metálicas , Animais , Sequência de Bases , Transporte Biológico Ativo , Células CHO , Materiais Revestidos Biocompatíveis , Cricetinae , Cricetulus , DNA/genética , Sistemas de Liberação de Medicamentos , Células HeLa , Humanos , Células MCF-7 , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Nanotecnologia , Tamanho da Partícula , Polietilenoimina , RNA Interferente Pequeno/genética , Ressonância de Plasmônio de Superfície
13.
Adv Drug Deliv Rev ; 62(7-8): 798-813, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20394786

RESUMO

In reconstructive surgery, there is a tremendous clinical need for adequate implants to repair soft tissue defects resulting from traumatic injury, tumor resection, or congenital anomalies. Adipose tissue engineering holds the promise to provide answers to this still increasing demand. The current approaches to adipose tissue engineering are comprehensively reviewed detailing the different cell carriers under investigation. A special focus is put on the applied cells. The delivered mesenchymal stem cells act in a dual role as building block of the new tissue and modulators of the host response. The conditioning of the cells in vitro prior to implantation decisively influences the tissue development and long-term survival in vivo. The special role of vascularization in adipose engineering is discussed. In all parts, key messages are defined providing the base for future advances in the generation of fat substitutes.


Assuntos
Tecido Adiposo/metabolismo , Transplante de Células/métodos , Engenharia Tecidual/métodos , Tecido Adiposo/citologia , Animais , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Procedimentos de Cirurgia Plástica/métodos , Regeneração , Condicionamento Pré-Transplante/métodos
14.
Tissue Eng ; 11(11-12): 1840-51, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16411830

RESUMO

Despite the clinical need for reconstructive and plastic surgery, the supply of engineered adipose tissue equivalents still remains a challenge. As yet, only preadipocytes have been applied as a cell material for the in vitro tissue engineering of fat. Herein, we report the establishment of a three-dimensional (3-D) long-term cell culture, using bone marrow-derived mesenchymal stem cells (MSCs) as an alternative cell source and custom-made poly(lactic-co-glycolic acid) (PLGA) scaffolds as a cell carrier. Cell-polymer constructs were cultivated for 4 weeks in both the absence and presence of basic fibroblast growth factor (bFGF), which was previously shown to strongly enhance the adipogenesis of MSCs in conventional 2-D short-term culture. A striking enhancement of the adipogenic differentiation of MSCs and tissue development caused by bFGF in the 3-D culture was observed by osmium tetroxide histology and scanning electron microscopy. At the molecular level, reflecting the increased accumulation of lipids, bFGF increased the enzymatic activity of glycerol-3-phosphate dehydrogenase, a late marker of adipogenesis, and the expression of adipocyte-specific genes peroxisome proliferator activated receptor-gamma2 (PPARgamma2) and glucose transporter-4 (GLUT4), as assessed by reverse transcription-polymerase chain reaction. This study demonstrates that the use of bone marrow-derived MSCs, especially in combination with bFGF, may represent a promising approach to adipose tissue engineering.


Assuntos
Tecido Adiposo/fisiologia , Células da Medula Óssea/fisiologia , Diferenciação Celular/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células-Tronco Mesenquimais/fisiologia , Engenharia Tecidual , Adipogenia/efeitos dos fármacos , Adipogenia/fisiologia , Tecido Adiposo/citologia , Animais , Células da Medula Óssea/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Masculino , Células-Tronco Mesenquimais/citologia , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual/métodos
15.
FEBS Lett ; 577(1-2): 277-83, 2004 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-15527799

RESUMO

Mesenchymal stem cells (MSCs) are capable of differentiating into a variety of lineages, including bone, cartilage, or fat, depending on the inducing stimuli and specific growth and differentiation factors. It is widely acknowledged that basic fibroblast growth factor (bFGF) modulates chondrogenic and osteogenic differentiation of MSCs, but thorough investigations of its effects on adipogenic differentiation are lacking. In this study, we demonstrate on the cellular and molecular level that supplementation of bFGF in different phases of cell culture leads to a strong enhancement of adipogenesis of MSCs, as induced by an adipogenic hormonal cocktail. In cultures receiving bFGF, mRNA expression of peroxisome proliferator-activated receptor gamma2 (PPARgamma2), a key transcription factor in adipogenesis, was upregulated even prior to adipogenic induction. In order to investigate the effects of bFGF on PPARgamma ligand-induced adipogenic differentiation, the thiazolidinedione troglitazone was administered as a single adipogenic inducer. Basic FGF was demonstrated to also strongly increase adipogenesis induced by troglitazone, that is, bFGF clearly increased the responsiveness of MSCs to a PPARgamma ligand.


Assuntos
Adipócitos/citologia , Fator 2 de Crescimento de Fibroblastos/fisiologia , Mesoderma/citologia , PPAR gama/metabolismo , Células-Tronco/citologia , Animais , Sequência de Bases , Divisão Celular , Células Cultivadas , Primers do DNA , Citometria de Fluxo , Ligantes , Masculino , PPAR gama/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...